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Storage capacity of a constructive learning algorithm
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SPSMS/DRFMC/CEA Grenoble, 17 av. des Martyrs, 38054 Grenoble Cedex 9, France

Received 16 September 1999

Abstract. Upper and lower bounds for the typical storage capacity of a constructive algorithm,
the tilinglike learning algorithm for the parity machine (Biehl M and Opper M 1991Phys. Rev.
A 44 6888), are determined in the asymptotic limit of large training set sizes. The properties of a
perceptron with threshold, learning a training set of patterns having a biased distribution of targets,
needed as an intermediate step in the capacity calculation, are determined analytically. The lower
bound for the capacity, determined with a cavity method, is proportional to the number of hidden
units. The upper bound, obtained with the hypothesis of replica symmetry, is close to the one
predicted by Mitchinson and Durbin (1989Biol. Cybern.60345).

1. Introduction

In this paper, we consider the problem of learning binary classification tasks from examples
with neural networks. The network’s architecture and the neurons’ weights are determined
based on a training set of examples or patternsLα, composed ofP = αN input vectors
{xµ}µ=1,...,P in N -dimensional space and their corresponding classesτµ = ±1. The latter
are the targets to be learned. Hereafter, we callα ≡ P/N the sizeof the training set. One
interesting property that characterizes a neural network is its storage capacity, which is the size
αc of the largest training set with arbitrary targets the network is able to learn (with probability
1). The perceptron, a single neuron connected to its inputs throughN weights, performs linear
separations and has a storage capacityαc = 2 [1–4]. It is possible to increase the storage
capacity of neural networks by considering more complicated architectures, like those with
one hidden layer ofk units. Such monolayer perceptrons map each input vectorx to a binary
k-dimensional internal representation determined by the outputs ofk perceptrons, which in
this context are also called hidden units. The overall network’s output to an input pattern is a
Boolean function of the corresponding internal representation. This function may be learned
by an output perceptron, but then the internal representations of the training set must be linearly
separable. In order to get rid of this constraint, networks implementing particular functions
of the hidden states have been investigated. Among these, the committee machine, whose
output is the class of the majority of the hidden units, and the parity machine, whose output
is the product of thek components of the internal representation, have deserved particular
attention [5].

Learning consists of adapting the number of hidden perceptrons and their weights in
order that the outputs of the network to the training examples match the corresponding
targets. The main problem is that the internal representations are unknown. Besides the CHIR
algorithm [6], that determines the internal representations through a random process involving
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learning faithful sets of internal representations withk fixed, most learning algorithms build
the internal representations through a deterministic incremental procedure that determinesk

by construction. In the latter case, the hidden perceptrons are trained one after the other with
targets that differ from one algorithm to another, until the correct classification is achieved.
The first incremental procedure was proposed by Gallant [7]. Many other authors developed
further this idea, like Ḿezard and Nadal with the tiling algorithm [8], Ruján and Marchand
with the sequential learning algorithm [9] and Biehl and Opper with the tilinglike learning
algorithm (TLA) [10]. Other variations have been proposed [11, 12]. It has been argued
that these incremental procedures may require a number of hidden units much larger than the
number actually needed by a network making use of its full storage capacity. In the following
we thus distinguish the algorithm’s capacity, defined as the size of the largest training set (with
arbitrary targets) learnable with the algorithm, from the capacity of the network with the same
architecture. Clearly the former cannot be larger than the latter. An upper bound for the storage
capacity of the parity machine withk hidden perceptrons has been obtained by Mitchinson and
Durbin [13] through a geometric approach:αc(k) 6 k ln k/ ln 2. Recent replica calculation
results, obtained in the limit of a large number of hidden perceptrons (k→ +∞) [14], strongly
suggest that this upper bound may effectively be reached. However, the learning problem
remains: is there a learning algorithm whose capacity saturates this bound? This question was
addressed recently in [15] within the same statistical mechanics framework as this work. In
spite of a thorough analysis, no clear-cut conclusion could be drawn in the asymptotic regime
of largek, because of a lack of precision in the numerical integration of the corresponding
equations.

In this paper, we determine analytically the storage capacity of a parity machine built with
the TLA. Our results present strong evidence showing that the storage capacity of the obtained
network is close to the upper bound, at least within the replica-symmetry (RS) approximation.
The paper is organized as follows: in section 2, we describe the TLA. The conditions necessary
for the TLA to converge impose strong constraints on the cost function used to train the hidden
perceptrons. These are discussed in section 3. Despite intensive research in this field, no
analytic results on the learning properties of the perceptron with threshold, in the asymptotic
limit α→ +∞ needed here, exist. These are deduced in section 4 for the Gardner cost function
with vanishing and finite margin, within the RS approximation. As this approximation is
known to provide only a lower bound to the perceptron’s actual training error [16,17], we also
determined an upper bound through a generalization of the Kuhn–Tucker (KT) cavity method
proposed by Gerl and Krey [18]. The general expression for the number of hidden perceptrons
generated by the TLA in the limitα→ +∞ is deduced in section 5. Our main result is that the
number of hidden units needed by the TLA to converge grows proportionally toα/(ln α)ν in
the largeα limit, whereν = 1 in the RS approximation andν = 0 within the KT cavity method,
provided that the hidden perceptrons learn through the minimization of their training errors.
Our results are discussed and compared both with the Mitchinson and Durbin bound [13] and
with the numerical results obtained by West and Saad [15]. The general conclusion is left to
section 6.

2. The tilinglike learning algorithm

In the following, we describe the TLA, considered here because of its simplicity. The TLA
needs hidden perceptrons with a threshold to generate the parity machine. The classification
performed by a perceptron is a linear separation defined by a hyperplane in theN -dimensional
input space, of normal vectorJ (J · J = 1) and distance to the originθ . TheN components
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of J are the perceptron’s weights andθ is its threshold. An examplex is classified as follows:

σ ≡ sign(J · x− θ). (1)

As already pointed out in [15] the threshold is useful in the case of unbalanced training
sets, containing more examples of one class than of the other. As we will see in the following,
this is the case for the successive perceptrons included by the TLA.

In the first learning step of the algorithm, the parametersJ1 andθ1 of a perceptron are
adapted in order to obtain the lowest possible number of training errors. This is usually done
through the minimization of a cost function:

E(J1, θ1;Lα) =
P∑
µ=1

V (λ
µ

1 ) (2)

where the potentialV is a function ofλµ1 , the stability of the exampleµ:

λ
µ

1 ≡ τµ(J1 · xµ − θ1). (3)

The stability is positive if and only if the example is correctly classified. Its absolute value is
the distance of the example to the separating hyperplane.

In principle, there is some freedom in the choice of the potentialV (λ). As it has to
penalize training errors, it has to be a decreasing function ofλ. Considering as cost function
the number of training errors corresponds to the particular choiceV (λ) = 2(−λ), where
2(x) is the Heaviside function. Other potentials, that do not minimize the number of training
errors but possess interesting learning or algorithmic properties may be chosen. Examples are
V (λ) = (κ − λ)n2(κ − λ) whereκ > 0 is a fixed positive margin chosena priori. The case
n = 0 corresponds to the so-called Gardner potential [3,4] which reduces to the error counting
function forκ = 0. The potential defined byn = 1 corresponds to the perceptron learning
algorithm [19–21] andn = 2 to the AdaTron [21,22].

After learning, the training error of the first perceptron is:

ε1
t (J
∗
1 , θ

∗
1 ;Lα) =

1

P

P∑
µ=1

2(−τµσµ1 ) (4)

whereσµ1 , the class given by the perceptron to the examplexµ, depends through equation (1)
on the parametersJ∗1 andθ∗1 that minimize the cost function.

If the training error is zero, the learning procedure stops. Then, the class associated to the
patterns by the parity machine is just the class given by the first perceptron. Otherwise, another
perceptron is included and trained with the aim of separating the correctly learned examples
from the wrongly learned ones. The corresponding training setL2

α = {xµ, τµ2 }µ=1,...,P contains
the same input examples asLα with new targetsτµ2 defined as follows:τµ2 = +1 if the example
xµ is correctly classified by the previous perceptron andτ

µ

2 = −1 if not. These targets may
be expressed asτµ2 = σ

µ

1 τ
µ. Notice that a fraction 1− ε1

t of patterns have targets +1, and
a fractionε1

t have targets−1. Since we expect the training errorε1
t to be smaller than12, the

probability of targets−1 is smaller than that of targets +1. The successive perceptrons need
a threshold to learn such biased training sets. Otherwise, the tilinglike construction cannot
converge.

The parametersJ∗2 andθ∗2 of the second perceptron are learned with the training setL2
α,

minimizing the same cost function as the first one. The same procedure, in which the perceptron
i + 1 learns the training setLi+1

α = {xµ, τµi+1 = τµi σµi }µ=1,...,P , has to be iterated untilεkt = 0.
Then, the productσµ of the classes{σµi }i=1,...,k given by the hidden perceptrons to an example
xµ corresponds to the targetτµ [10, 12], asσµ ≡ σ

µ

1 · · · σµk = σ
µ

1 · · · σµk−2(σ
µ

k−1)
2τ
µ

k−1 =
σ
µ

1 · · · σµk−2τ
µ

k−1 = · · · = τµ. Thus, the TLA constructs a parity machine withk hidden units.
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3. Convergence conditions

It has been shown that if the examples are binary [10], or real-valued vectors in general
position [23], there is a solution that satisfies the TLA construction with the property thatPεit
is a succession of decreasing integer numbers. Thus, a finitek 6 P exists for whichεkt = 0.

In the following, we are interested in thetypicalnumberk of hidden perceptrons necessary
for the TLA to learn a training set of sizeα. This is obtained in the thermodynamic limit where
N andP diverge keepingα = P/N constant. In this limit,k is expected to be independent
of the particular set of training patterns, and to depend only onα. However, asP → +∞,
it is not possible to argue thatPεit is a succession of strictly decreasing numbers in order to
guarantee the convergence of the TLA in a finite number of steps (i.e. of hidden units). In
particular, the solution in which a single example is correctly learned at each step, used by the
convergence proofs [10, 23] at finiteN , leads tok → +∞. In order to obtain afinite number
k(α) in the thermodynamic limit, each perceptron has to learn at least a number of examples
of the order ofN . This imposes some general conditions on the learning algorithm used to
train the perceptrons.

It is worth pointing out that the conditions for convergence with finitek in the
thermodynamic limit do not guarantee the convergence forall the possible training sets of
sizeα. This is due to the probabilistic nature of the statistical physics results, which predict
the average behaviour. The results may not be correct for subsets of zero measure in the space
of training sets, and in particular for the worst case.

As described before, the training setLiα used to train the perceptroni contains a fraction
1− εi−1

t of patterns with targets +1, and a fractionεi−1
t of patterns with targets−1. These

targets are slightly correlated, as they are determined by the training errors of the preceding
perceptron. However, it has been shown that these correlations are weak [15]. We neglect
them in the limitα → +∞ considered in the following. Thus, we consider that the targets to
be learned by the successive perceptrons are i.i.d. random variables, and have a probability
1−εi−1

t to be +1 andεi−1
t to be−1. As this neglects the constraints imposed by the correlations

on the minimization of the training error, we expect that the assumption of uncorrelated targets
underestimate the perceptrons’ training errors. It follows that our estimation of the number
k(α) of perceptrons necessary to construct the parity machine is a lower bound to the actual
value.

Consider a perceptron learning a training set of sizeα with targets given by the following
biased probability distribution:

P(τ) = (1− ε)δ(τ − 1) + εδ(τ + 1). (5)

If Et (α, ε) is the perceptron’s training error, i.e. the fraction of wrongly learned examples,
there is a simple relationship between the training errorsεi−1

t andεit of two successive hidden
perceptrons:

εit = Et (α, εi−1
t ) (6)

since the bias in the probability of the targets of perceptroni is due to the training error of the
preceding unit.

The successive training errorsεit must decrease monotonically withi and eventually vanish
for a finitek. Otherwise the TLA does not converge. Taking equation (6) into account, this
imposes that

Et (α, ε) < ε. (7)

Condition (7) restricts the possible potentials in the cost function (2). For example, in the
following section we show that the perceptron and the AdaTron potentials [19–22] do not
satisfy the condition (7) for allα whenε < 1

2.
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The stopping condition of the TLA imposes that there is a finite value ofk such that

εkt = Et (α, εk−1
t ) = 0. (8)

This in turn imposes that for allα, there always existsε0(α) 6= 0 such thatEt (α, ε0(α)) = 0.
Thus, the stopping condition (8) imposes that the inverse functionα0(ε) diverges asε → 0.
In fact, α0(ε) is the storage capacity of a perceptron learning targets drawn with the biased
probability (5) (in the literature, the bias is usually defined as 1−2ε). Actually, the divergence of
α0(ε) occurs whenever the potentialV (λ) vanishes forλ > 0 and is strictly positive forλ < 0.
This is the case for the Gardner potential withκ = 0, for whichα0(ε) ∼ −(ε ln ε)−1 [2–4].
However, even if the perceptron has been extensively studied, very few results exist for the
case of training sets with biased distributions of targets [3,10,24]. In particular, the asymptotic
behaviour of the learning curvesEt (α, ε) as a function ofα is unknown. These are deduced in
the next section. The reader not interested in these intermediate calculations may skip them
and go straight to section 5. Only the results displayed by equations (24), (30), (45) and (48)
are used to determine the asymptotic behaviour of the TLA.

4. Perceptron’s training error for biased target distributions

In order to learn training sets with biased distributions of targets, the perceptron must have
a threshold, as the separating hyperplanes that minimize the training error do not contain the
origin. Here we present new analytic results, mainly in the asymptotic regimeα → +∞, for
the Gardner cost function defined by the potential

V (λ) = 2(κ − λ). (9)

For κ = 0, the corresponding cost function is the number of training errors. Forκ > 0, the
cost function is the number of examples with stability (3) smaller thanκ.

The section is divided into two parts. In the first one we derive results within the RS
approximation, which is known to underestimate the training error. In the second part we
obtain upper bounds for the training error, using a cavity method.

4.1. Replica calculation

We briefly recall the main steps of the replica calculation, that follows the same lines as [10,24].
As we are interested in the properties of the minimum of the cost function, a temperature
T ≡ 1/β is introduced and the cost function is considered as an energy. The corresponding
partition function is

Z(β,Lα(ε)) =
∫

dθP (θ)
∫

dJP(J) exp(−βE(J, θ;Lα(ε))) (10)

where the components ofJ are the weights, andθ is the perceptron’s threshold.Lα(ε) is a
training set of sizeα. The input vectorsxµ are drawn from a Gaussian distribution with zero
mean and unit variance in all the directions. The targets have the biased distribution (5).

Following Gardner’s approach, the patterns of the training set are considered as frozen
disordered variables. The replica trick allows to calculate the mean free energy in the
thermodynamic limit (N → +∞, P → +∞ and α constant) averaged over all possible
training sets, as follows:

f (α, ε) = lim
β→+∞

lim
N→+∞
P→+∞
α=P/N

lim
n→0
− 1

βnN
lnZn(β,Lα(ε)) (11)
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where the bar stands for the mean over the training sets with same sizeα. Thus, the free energy
is obtained through the averaging of a partition function ofn replicas of the original system.
Hereafter we assume RS, i.e. that the replicas are equivalent under permutation. However,
it is well known that RS breaks down when the training error is finite [25]. Calculations
including one step of RS breaking have shown that the training error obtained within the RS
approximation is a lower bound for the actual one [16,17].

Assuming that the weights have a uniform prior probability over the surface of theN -
dimensional sphere of unitary radius, and the threshold a uniform distribution over the real
axis between−√N and +

√
N , the free energy within the RS approximation is

f (α, ε) = max
c

min
θ
g(α, ε, c, θ) (12)

where the functiong is

g(α, ε, c, θ) = − 1

2c
+ α(1− ε)

∫
W(λ(y, c), y, c)exp

(
− (y + θ)2

2

)
dy√
2π

+αε
∫
W(λ(y, c), y, c)exp

(
− (y − θ)

2

2

)
dy√
2π

(13)

with λ(y, c) the function that minimizes:W(λ, y, c) ≡ V (λ)+(λ−y)2/2c. c is the usual order
parameter in replica calculations (c = limβ→+∞ β(1− Ja · Jb) with Ja andJb the directions
corresponding to two different replicas). The parametersc andθ are solutions of the following
extremum conditions

∂g

∂c
= ∂g

∂θ
= 0. (14)

The training errorEt (α, ε) may be easily deduced by integration of the distribution of
stabilities over the negative values [24], yielding

Et (α, ε) = (1− ε)
∫
2(−λ(y, c))exp

(
− (y + θ)2

2

)
dy√
2π

+ε
∫
2(−λ(y, c))exp

(
− (y − θ)

2

2

)
dy√
2π
. (15)

Equations (10)–(15) are valid for any potentialV (λ) in (2). In the following, we
concentrate specifically on the Gardner potential (9). The functionλ(y, c) that minimizes
W(λ, y, c) for a givenκ is

λ(y, c) =


y for y < κ −√2c
κ for κ −√2c < y < κ

y for κ < y.

(16)

Introducing (16) into (13), we deduceg(α, ε, c, θ). The conditions (14) allow us to determine
the equations forc andθ :

1

α
= (1− ε)

∫ κ+θ

κ−√2c+θ
(κ + θ − y)2Dy + ε

∫ κ−θ

κ−√2c−θ
(κ − θ − y)2Dy (17)

0= (1− ε)
∫ κ+θ

κ−√2c+θ
(κ + θ − y)Dy − ε

∫ κ−θ

κ−√2c−θ
(κ − θ − y)Dy (18)

where Dy = exp(−y2/2) dy/
√

2π . The distribution of stabilities of the training patterns is
ρ(λ) = (1− ε)ρ+(λ) + ερ−(λ) with

ρ±(λ) = δ(λ− κ)
∫ κ±θ

κ−√2c±θ
Dy + {2(κ −

√
2c − λ) +2(λ− κ)} exp

(
− (λ± θ)

2

2

)
1√
2π
.

(19)
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ρ(λ) presents a two-band structure with a gap betweenλ− = κ −
√

2c andλ+ = κ. Notice
that only ifλ− < 0 the lower band corresponds to wrongly classified patterns. Ifκ > 0, then
λ− may become positive for sufficiently small values ofc. In that case, the training error is
only a fraction of the patterns lying in the lower band. Taking this into account, the training
errorEt (α, ε) is

Et (α, ε) = (1− ε)
∫ +∞

max[−θ,√2c−κ−θ ]
Dy + ε

∫ +∞

max[θ,
√

2c−κ+θ ]
Dy. (20)

We derive separately the asymptotic properties forκ = 0 and forκ 6= 0, for reasons that
will become clear in the following.

We consider first the caseκ = 0. The band of positive stabilities starts atλ+ = 0 so that
the gap, of width

√
2c, lies strictly in the region of negative stabilities. As we expect that the

gap vanishes forα→ +∞, we look for solutions of the extremum equations withc→ 0 and
|θ | → +∞ (notice thatθ is negative forε < 1

2) with the producta = θ√2c finite. Introducing
these assumptions into (18), we determineε as a function ofa:

ε = ea(1− a)− 1

2(cosha − a sinha − 1)
. (21)

The relation betweenα, θ anda follows from (17) and (21):

1

α
= exp(−θ2/2)

θ3
√

2π

{
a2(sinha − a)

cosha − a sinha − 1

}
. (22)

a andθ are increasing functions ofε as expected. For a symmetric distribution of targets
(ε = 1

2) thena = 0 corresponding to a vanishing threshold. Conversely, if all the targets
are +1 (ε = 0), the threshold diverges to−∞. For finiteε < 1

2, the absolute value of the
threshold is an increasing function ofα. From equation (22) we obtain the development
θ2 = 2 lnα+O(ln ln α). Notice that neglecting ln lnα with respect to lnα is an approximation
only valid for large enoughα (α > 1010). As was already pointed out in [24], this behaviour
cannot be deduced by solving the equations (17) and (18) numerically.

The training errorEt (α, ε) (20) withκ = 0 in the limitα→ +∞ is then

Et (α, ε) ' ε − exp(−θ2/2)

θ
√

2π

{
sinha − a

cosha − a sinha − 1

}
. (23)

Using equations (22) and (23), we deduce that

Et (α, ε) ' ε − θ2

αa2(ε)
' ε − ln α

α

2

a2(ε)
(24)

wherea(ε) is the inverse function ofε(a) given by (21).
Consider now the Gardner potential with finiteκ. Although a solution of equations (17)

and (18) under the assumption thatc → 0 with finite θ in the limit α → +∞ exists, it does
not correspond to the correct extremum ofg (13). It is, however, worth examining. The
corresponding value ofθ as a function ofε andκ follows from (18), and the relation between
α, θ, κ andc from (17). We find that

ε = 1

1 + exp(2κθ)
(25)

1

α
= 2ε(2c)3/2

3
√

2π
exp

(
− (κ + θ)2

2

)
. (26)

As
√

2c < κ, the training error given by equation (20) is

Et (α, ε) = ε + (1− 2ε)
∫ +∞

−θ
Dy (27)
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and is larger thanε for any finiteθ . Note that this (incorrect) solution does not satisfy the
condition (7) necessary for the TLA to converge.

In fact, the correct training error corresponds to a solution with finite gap (
√

2c → 2κ)
and a diverging threshold (θ → −∞) in the largeα limit. Defining δ ≡ 2κ − √2c, and
keeping only the leading terms, equations (17), (18) and (20) forκ > 0 give

ε

1− ε ' −
exp(δ(θ + κ))

2κ(θ + κ)
(28)

1

α
' 2κ(1− ε)
(θ + κ)2

√
2π

exp

(
− (θ + κ)2

2

)
(29)

Et (α, ε) ' ε − 1

(2κ)2
1

α
. (30)

The neglected terms are O(exp(−2κ
√

2 lnα + ln lnα)), which are only negligible ifκ is finite.
The prefactor 1/(2κ)2 in (30), which diverges whenκ → 0, reflects the existence of the
different behaviours for vanishing and for finiteκ.

This second solution only exists for bounded potentials. The perceptron and the AdaTron
potentials diverge forλ→−∞, and the corresponding training errors become larger thanε in
the largeα limit. Thus, if these learning algorithms were used to train the hidden perceptrons,
the TLA would not converge.

Although the case of unbiased targets (i.e.ε = 1
2) is not essential for our study, we include

here the corresponding analytic results for the sake of completeness. In this case, the free
energyg (13) is invariant with respect to the threshold symmetryθ ↔ −θ . Thus,θ = 0
is a trivial extremum ofg. However, as already discussed by West and Saad in [24], two
new solutions breaking the threshold symmetry appear above a given training set sizeαθ .
The analytical expression ofαθ may be deduced under the assumption that the two different
solutions appear continuously atαθ , as in usual second-order phase transitions, through a series
expansion of the free energy in powers ofθ :

g(α, ε, c, θ) = g(α, ε, c,0) +
θ2

2

∂2g

∂θ2

∣∣∣∣
θ=0

+
θ4

24

∂4g

∂θ4

∣∣∣∣
θ=0

. (31)

Due to the symmetry, the odd derivatives with respect toθ vanish. The condition

∂2g

∂θ2
= 0=

∫ κ

κ−√2c
y(κ − y)Dy (32)

defines
√

2c at the transition. The sizeαθ satisfies

αθ =
(∫ κ

κ−√2c
(κ − y)2Dy

)−1

(33)

and the two new solutions that appear forα > αθ correspond to a thresholdθ± ∼ ±√α − αθ .
Note that the usual stability criterion for second-order phase transitions,∂4g/∂θ4 > 0, cannot
be directly applied here because we have two order parameters. Taking into account the leading
corrections toc, proportional toθ2, it is straightforward to verify that the solutions with finite
threshold are stable.

4.2. Kuhn–Tucker cavity method

In order to circumvent the RS approximation, we determine the training errorEt (α, ε) using
the KT cavity method proposed by Gerl and Krey [18], that we generalize here to the case
of a perceptron with a threshold learning a training set with a biased probability of targets
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given by (5). Contrary to the RS solution, this cavity method has been shown to overestimate
the training error [18]. Consequently, the results allow us to deduce an upper bound for the
number of perceptrons needed by the tilinglike procedure to converge.

With the KT cavity method, the properties of the perceptron are determined by analysing
self-consistently its response to the introduction of a new pattern into the training set. It is
particularly adapted to study the properties of the Gardner potential (9) because it is based
on the fact that the weights minimizing the corresponding cost function are a (conveniently
normalized) linear combination of the patterns with stabilityκ, which are calledsupport
vectors.

Let us assume that the perceptron has learned the training set and that the value of the cost
function isE. This is the number of examples with stability smaller than the marginκ. The
support vectors belong to the subset ofαN −E remaining examples that do not contribute to
the cost. The perceptron’s weights may be expressed as follows:

J = 1

N

∑
µ∈{αN−E}

τµaµxµ (34)

with aµ > 0 for λµ = κ, andaµ = 0 for λµ > κ. These are the so-called KT conditions.
Definingaµ = 0 for examples withλµ < κ, the normalization of the weights imposes that

1= J · J = 1

N

αN∑
µ=1

τµaµxµ · J = 1

N

αN∑
µ=1

aµ(κ + τµθ). (35)

As usual with cavity methods, we introduce a new examplex0 with targetτ 0, drawn
respectively with the same probability densities as the other inputs and targets in the training
set. Before any modification, as the pattern 0 is uncorrelated with the directionJ and its
components are assumed to have a Gaussian distribution, its projection ontoJ has a Gaussian
probability. Therefore, the joint probability distribution of the targetτ 0 and the stability
λ̃0 = τ 0(x0 · J − θ) before learning is

5(λ̃0, τ 0) = P(τ 0)√
2π

exp

(
− (λ̃

0 + τ 0θ)2

2

)
(36)

whereP(τ 0) is defined by (5). We assume a single ground state and we calculate the necessary
adjustments of the weightsJ in order to obtain self-consistent equations for the cost function
as a function ofα.

If λ̃0 > κ, no learning is needed, as the new example does not contribute to the cost.
If λ̃0 < κ, two different situations may occur. Either the distance of the new example to
the hyperplane is too large and the perceptron is unable to learn it, or the example is close
enough and can be learned. The natural strategy to minimize the cost function is to include
the new example in the subset of support vectors only ifκ −√2c < λ̃0 < κ, where

√
2c is a

positive quantity which has to be determined self-consistently. Otherwise, the weights are not
modified and the new example is left in the subset of examples contributing to the cost. We
are left with the problem of determining the perturbation on the weights such that examples
with κ − √2c < λ̃0 < κ become support vectors after learning. As a first step, this can be
obtained by takinga0 = κ − λ̃0. However, this modifies the stabilities of the other support
vectors. The coefficientsaµ > 0 (µ > 1) must be corrected by a small amount to compensate
for this perturbation. This correction in turn modifies the stability of the new example 0, and
a0 has to be corrected. After a full summation of the contributions, Gerl and Krey [18] have
shown that the correct value ofa0 is

a0 = κ − λ̃0

1− αP (aµ > 0)
(37)
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whereP(aµ > 0) is the probability thataµ > 0. This probability is determined assuming that
the new example is equivalent to the others:

P(aµ > 0) ≡ P(a0 > 0) =
∑
τ 0=±1

∫ κ

κ−√2c
5(λ̃0, τ 0) dλ̃0. (38)

Having specified the learning procedure, we are able to determine
√

2c andE self-
consistently. First of all, the normalization of the weights given by equation (35), may be
written as follows:

1= α
∑
τ 0=±1

∫ +∞

−∞
a0(κ + τ 0θ)5(λ̃0, τ 0) dλ̃0 (39)

with a0 given by (37) forκ−√2c < λ̃0 < κ anda0 = 0 elsewhere. Combining equations (38)
and (39), we obtain

1= α(1− ε)
∫ κ+θ

κ−√2c+θ
(1 + (κ + θ)(κ + θ − y))Dy

+αε
∫ κ−θ

κ−√2c−θ
(1 + (κ − θ)(κ − θ − y))Dy. (40)

This equation, which determines
√

2c for a fixed thresholdθ , is slightly different from the RS
result (17). The cost functionE is determined assuming that it remains unchanged (to order√
N ) upon learning the new example. Thus, the cost per example is

E

αN
=

∑
τ 0=±1

∫ κ−√2c

−∞
5(λ̃0, τ 0) dλ̃0

= (1− ε)
∫ κ−√2c+θ

−∞
Dy + ε

∫ κ−√2c−θ

−∞
Dy. (41)

Note that whenκ − √2c < 0, E/(αN) (41) represents the fraction of training errors
Et (α, ε) and is similar to (20). The thresholdθ may be optimized in order to minimize the cost
function:

∂E

∂θ
= 0. (42)

In the following, we solve (40) and (42) in the largeα limit. First of all, we consider
the caseκ = 0. In this case,E/(αN) (equation (41)) is the training errorEt . As for the
RS calculation, we may assume

√
2c � |θ | anda = θ√2c finite. We obtain the following

equations:
ε

1− ε ' e2a
(√

4a2 + 1− 2a
)

(43)

1

α
' a{(1− ε)ea + εe−a}exp(−θ2/2)

θ
√

2π
(44)

Et (α, ε) ' ε − F(a)
α
' ε − 1

α

(1 + 2a −
√

4a2 + 1)

a(1 +
√

4a2 + 1− 2a)
. (45)

These results differ from those obtained with the RS calculation (equations (21), (22)
and (24)).

In the case of finite marginκ, the pertinent assumptions in the largeα limit are
√

2c→ 2κ
and θ → −∞. With these, here againE/(αN) (41) is the training error. Defining



Storage capacity of a constructive learning algorithm 1723

t[ ]ε α,ε

ε

ε t
1

ε t
2

ε t
3

ε t
4

ε t
5

ε t
6

= 0

1/2

0 1/2

Figure 1. Evolution of the successive training errors. The
full curve corresponds to the training errorEt (α, ε) of a
perceptron with biased targets. The first training errorε1

t

is given byEt (α, 1
2) and the following ones by the relation

εi+1
t = Et (α, εit ). In this case, the learning algorithm

converges with six perceptrons.

δ = 2κ −√2c, we get

ε

1− ε '
4 exp(δ(θ + κ))

(θ + κ)2
(46)

1

α
' 8κ(1− ε)
(θ + κ)2

√
2π

exp

(
− (θ + κ)2

2

)
(47)

Et (α, ε) ' ε +
1

2κα(θ + κ)
' ε − 1

2κα
√

2 lnα
. (48)

It is worth pointing out that even within the KT cavity method, the training error satisfies
the convergence conditions (7) and (8).

The main conclusion of this section is that the TLA converges provided that the hidden
perceptrons are trained through the minimization of a cost function with a bounded potential.
The Gardner potential (9) satisfies this constraint. The asymptotic behaviours of the training
error in the largeα limit, calculated forκ = 0 andκ 6= 0 using two different approaches are
used in the following sections to characterize the storage capacity of the constructive algorithm.

5. Number of hidden perceptrons in the largeα limit

We assume that the probability distribution of the targetsτµ in the training set is symmetric,
given by (5) withε = 1

2, so that the training error of the first perceptron isε1
t = Et (α, 1

2).
Considering iteratively the relationship between the training errors of two consecutive
perceptrons (6) yields

◦kfα( 1
2) = fα ◦ · · · ◦ fα︸ ︷︷ ︸

k times

( 1
2) = 0 (49)

wherefα(ε) stands forEt (α, ε), the symbol◦ is for the composition of functions andk is the
number of perceptrons necessary for convergence of the TLA algorithm.

The evolution of the training errors of the successive perceptrons is schematically
represented on figure 1 for an arbitrary functionEt (α, ε), where the tilinglike algorithm is
shown to converge in six steps, i.e.k = 6.
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We are interested in the limit of large training set sizes (α → +∞). In this limit, the
training errorEt (α, ε) is close toε:

Et (α, ε) ' ε − h(α, ε) (50)

with h(α, ε) a function that vanishes in the limitα→ +∞. Note that those cost functions that
do not satisfy condition (7) for allα are useless in this limit, since the error reduction at each
stepεi+1

t −εit = −h(α, εit ) vanishes at some finite value ofα. For larger values ofα it becomes
positive, and the TLA does not converge. In the preceding section we showed that the Gardner
potential both with vanishing and finite marginκ hash(α, ε) > 0 (see equations (24) and (30))
and satisfies condition (7).

As h(α, ε) vanishes in the limitα → +∞, we can guess that the numberk(α) diverges.
In this limit we can introduce the continuum approximation, replacingi/k by the real-valued
variablex. Then, the error reduction at each step is given by

εi+1
t − εit '

1

k

dε

dx
= −h(α, ε). (51)

After integration of both sides of the equation dε/h(ε, α) = −k dx at constantα, from ε = 1
2

andx = 0 to ε = 0 andx = 1, we obtain

k(α) '
∫ 1/2

0

dε

h(α, ε)
=
∫ 1/2

0

dε

ε − Et (α, ε) . (52)

Equation (52) gives the asymptotic behaviour of the number of hidden perceptrons necessary
for the TLA to converge in the limitα→ +∞. It depends on the cost function used to train the
perceptrons throughEt (α, ε). The storage capacityαc(k) of the TLA is then obtained through
the inversion ofk(α).

Hereafter we consider the case where the hidden perceptrons are trained with the Gardner
cost function, using the results of the preceding section.

We determine first the number of hidden units obtained when the perceptrons minimize
the number of training errors, that is, the Gardner cost function withκ = 0. Inserting into (52),
the result (24) obtained within the RS approximation, we obtain

kRS(α) '
∫ 1/2

0

dε

ε − Et (α, ε) '
α

2 lnα

∫ 1/2

0
a2(ε) dε ' 0.475

α

ln α
(53)

wherea(ε) is given by (21). From this result, we deduce the storage capacity in the limit of a
large number of hidden perceptrons:

αRSc (k) ' 2.11k ln k. (54)

Surprisingly, the capacity of the TLA scales withk like the upper bound for the parity machine
with the same number of hidden units, and only the prefactor is overestimated.

Using the result (45) obtained with the KT cavity method, which overestimates the
perceptron’s training error, we get

kKT (α) ' α
∫ 1/2

0

dε

F (a(ε))
' 1.082α (55)

whereF(a) is defined in (45) anda(ε) is given by (43). The corresponding storage capacity
is

αKTc (k) ' 0.924k. (56)

We find thatαKTc < αRSc as expected. The behaviour of the storage capacity obtained with
the KT cavity method is linear ink. This suggests that including RS breaking in the replica
calculation may modify thek ln k behaviour to one proportional tok(ln k)ν with 0 6 ν 6 1.
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However, as the actual training error of the perceptrons seems closer to the RS solution than
to the KT cavity result [18], we expectν to be close to 1.

In the following we consider the parity machine obtained when the perceptrons are trained
using the Gardner cost function with a finite marginκ. We get:

kRS(α, κ) ' 2κ2α and kKT (α, κ) ' κα
√

2 lnα. (57)

After inversion of (57), the capacities deduced within the two approximations are

αRSc (k, κ) ' k

2κ2
and αKTc (k, κ) ' k

κ
√

2 lnk
(58)

respectively. Here again, the behaviours ofk(α) andαc(k) obtained with the RS approximation
and with the KT cavity method differ. In both cases, the value ofκ only affects the prefactor
but not the scaling withα or k. Consistently, the prefactor ofαc diverges forκ → 0, where the
expressions (57) and (58) have to be replaced by (54) and (56) respectively, as the functional
dependence of the storage capacity withk is different forκ = 0.

Imposing a finite margin dramatically decreases the capacity of the TLA. More precisely,
the exponentsν of the logarithmic factor differ, depending on the approximations (RS and KT
cavity method), in bothκ-regimes (νRS(κ = 0) = 1, νRS(κ > 0) = 0, νKT (κ = 0) = 0 and
νKT (κ > 0) = − 1

2).
It is interesting to compare the exponents determined analytically within the RS

approximation, to those obtained by West and Saad [15] through a numerical iteration over the
successive perceptrons’ training errors. Forκ = 0, they obtainν close to 1 (ne = 1.070 and
1.049, andnl = 1.079 and 1.062, fork = 1000 and 4000 respectively (table 3 in [15])) in very
good agreement with our resultνRS(κ = 0) = 1. In the case of finiteκ, West and Saad find that
the exponent decreases with increasingκ (figure 13 left in [15]). Our result (58) shows that the
exponent does not depend onκ, only the prefactor does. The dependence found numerically is
probably due to higher order corrections, that behave like O(exp(−2κ

√
2 lnα+ln lnα)). These

terms, which are less and less negligible when approachingκ = 0, hinder the determination
of the power-law exponent in the asymptotic regimeα → +∞. Remarkably, the RS and KT
exponentsνRS andνKT provide correct upper and lower bounds for the exponent obtained
numerically within the one-step RS breaking approximation (figure 13 right in [15]).

6. Conclusion

We determinedanalyticallythe typical number of hidden units needed by a simple constructive
procedure, the TLA proposed in [10], to build a parity machine. The number of hidden units
depends strongly on the asymptotic properties of the learning algorithm used to train them.

We showed that the cost function minimized by the hidden perceptrons has to be bounded.
This rules out, in particular, the perceptron or the AdaTron learning algorithms, as with these
the training error cannot decrease beyond a finite value that depends on the training set size
and on the bias of the target’s distribution. This is so because the hidden perceptrons have to
learn highly biased output distributions. In the asymptotic regime, large thresholds are needed
to minimize the training error as, loosely speaking, such solutions allow to classify correctly
most patterns of the majority class. In such solutions, a non-negligible fraction of patterns
have large negative stabilities. If the cost function is unbounded forλ → −∞, it favours
solutions with small thresholds, which have large training errors. With bounded potentials,
like the counting functions used in the Gardner cost function, solutions with large thresholds
exist.

We deduced the properties of a perceptron with threshold, learning targets drawn with
a biased distribution, trained with the Gardner cost function with and without margin. In
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particular, solutions such that the training error is smaller than the bias always exist. This
is a condition necessary for the TLA to converge. The asymptotic behaviour of the learning
curvesEt (α, ε) was determined through a replica calculation assuming RS, and also using the
KT cavity method. The former approximation underestimates the training error, while the
latter overestimates it. The main results are the expressions (24), (30), (45) and (48) relating
the training error of the perceptronEt (α, ε) to the biasε of the target distribution. Closer
inspection of equations (24) and (30) shows that the error reductionEt (α, ε)− ε at largeα is
larger ifκ = 0 than forκ > 0.

These results allow us to find analytically the number of unitsk(α) needed by the
constructive procedure to converge in the largeα limit. As expected, the smallestk(α) is
obtained when the hidden perceptrons minimize their training errors, which corresponds to
the Gardner cost function withκ = 0. Nevertheless, it is also worth studying the case with
κ > 0, which is interesting in noisy applications. The storage capacityαc(k) of the TLA is
obtained through the inversion ofk(α). Our results have been obtained under the simplifying
assumption that the targets the successive perceptrons have to learn are uncorrelated. This
hypothesis has been shown to be a good approximation [15] in the limit of large training sets
considered here.

In the limit of largek we findαRSc (k) ' 2.11k ln k within the RS approximation. It is
interesting to compare this algorithm-dependent storage capacity to the storage capacity of a
parity machine with the same number of hidden perceptrons. The latter is independent of the
learning algorithm. Geometric arguments [13] and a replica calculation where the permutation
symmetry among hidden units has to be broken [14], both lead toαc = k ln k/ ln 2. It is
surprising that, although we disregarded the correlations between perceptrons and assumed
RS, which both lead to an overestimation of the storage capacity, we find the same leading
behaviour. Only the prefactor is overestimated. In fact, the permutation symmetry only arises
when the perceptrons are trained simultaneously. As it is absent in the case of the incremental
construction, the consequence of the RS approximation is less dramatic than in [14].

As the KT cavity method provides an upper bound to the perceptron’s training error, it
allows us to determine a lower bound for the TLA storage capacity. This bound scales linearly
with the number of hidden units, suggesting that a calculation including full RS breaking may
change the power law of the logarithmic factor. We expect thatαc ∼ k(ln k)ν with 06 ν 6 1.

Acknowledgment

It is a pleasure to thank K Y Michael Wong for clarifying comments about the KT cavity
method.

References

[1] Cover T M 1965IEEE Trans. Electron. Comput.14326–34
[2] Gardner E 1987Europhys. Lett.4 481–5
[3] Gardner E 1988J. Phys. A: Math. Gen.21257–70
[4] Gardner E and Derrida B 1988J. Phys. A: Math. Gen.21271–84
[5] Watkin T L H, Rau A andBiehl M 1993Rev. Mod. Phys.65499–543
[6] Grossman T, Meir R and Domany E 1989Complex Syst.2 555
[7] Gallant S I 1986Proc. 8th Ann. Conf. Science Soc. (Amherst, MA, August 1986)pp 652–60
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